Zinc-finger transcription factor Slug contributes to the function of the stem cell factor c-kit signaling pathway.
نویسندگان
چکیده
The stem cell factor c-kit signaling pathway (SCF/c-kit) has been previously implicated in normal hematopoiesis, melanogenesis, and gametogenesis through the formation and migration of c-kit(+) cells. These biologic functions are also determinants in epithelial-mesenchymal transitions during embryonic development governed by the Snail family of transcription factors. Here we show that the activation of c-kit by SCF specifically induces the expression of Slug, a Snail family member. Slug mutant mice have a cell-intrinsic defect with pigment deficiency, gonadal defect, and impairment of hematopoiesis. Kit(+) cells derived from Slug mutant mice exhibit migratory defects similar to those of c-kit(+) cells derived from SCF and c-kit mutant mice. Endogenous Slug is expressed in migratory c-kit(+) cells purified from control mice but is not present in c-kit(+) cells derived from SCF mutant mice or in bone marrow cells from W/W(v) mice, though Slug is present in spleen c-kit(+) cells of W/W(v) (mutants expressing c-kit with reduced surface expression and activity). SCF-induced migration was affected in primary c-kit(+) cells purified from Slug-/- mice, providing evidence for a role of Slug in the acquisition of c-kit(+) cells with ability to migrate. Slug may thus be considered a molecular target that contributes to the biologic specificity to the SCF/c-kit signaling pathway, opening up new avenues for stem cell mobilization.
منابع مشابه
The Potential Mechanism of ZFX Involvement in Cell Growth
Background:The zinc-finger X linked (ZFX) gene encodes a transcription factor that acts as a regulator of self-renewal of stem cells. Due to the role of ZFX in cell growth, understanding ZFX protein-protein interactions helps to clarify its proper biological functions in signaling pathways. The aim of this study is to define ZFX protein-protein interactions and the role of ZFX in cell growth. ...
متن کاملP 129: The Role of Overexpression Transcription Factor BRN 4 in Multiple Sclerosis
Adult neurogenesis is a process of producing nerve cells from their progenitor that occurs in some areas in the brain such as the hypothalamus. Low activity in this area plays a role in neural degeneration and diseases such as multiple sclerosis, epilepsy and depression. MS is a neurodegenerative disease with a permanent disability that the main reason for it is axonal degeneration and neuronal...
متن کاملMolecular dissection of prethymic progenitor entry into the T lymphocyte developmental pathway.
Notch signaling activates T lineage differentiation from hemopoietic progenitors, but relatively few regulators that initiate this program have been identified, e.g., GATA3 and T cell factor-1 (TCF-1) (gene name Tcf7). To identify additional regulators of T cell specification, a cDNA library from mouse Pro-T cells was screened for genes that are specifically up-regulated in intrathymic T cell p...
متن کاملMolecular and Cellular Pathobiology c-Kit Is Suppressed in Human Colon Cancer Tissue and Contributes to L1-Mediated Metastasis
The transmembrane neural cell adhesion receptor L1 is aWnt/b-catenin target gene expressed in many tumor types. In human colorectal cancer, L1 localizes preferentially to the invasive front of tumors and when overexpressed in colorectal cancer cells, it facilitates their metastasis to the liver. In this study, we investigated genes that are regulated in human colorectal cancer and by the L1-NF-...
متن کاملSlug contributes to cancer progression by direct regulation of ERα signaling pathway
Hormone therapy targeting estrogen receptor α (ERα) is the most effective treatment for breast cancer. However, this treatment eventually fails as the tumor develops resistance. Although reduced expression of ER-α is a known contributing factor to endocrine resistance, the mechanism of ER-α downregulation in endocrine resistance is still not fully understood. The present study shows that Slug h...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Blood
دوره 100 4 شماره
صفحات -
تاریخ انتشار 2002